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Constant mean curvature surfaces via an integrable
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Abstract. It is shown that the equation which describes constant mean curvature surfaces
via the generalized Weierstrass–Enneper induction has Hamiltonian form. Its simplest finite-
dimensional reduction is the integrable Hamiltonian system with two degrees of freedom. This
finite-dimensional system admitsS1-action and classes ofS1-equivalence of its trajectories are
in one-to-one correspondence with different helicoidal constant mean curvature surfaces. Thus
the interpretation of well known Delaunay and do Carmo–Dajczer surfaces via an integrable
finite-dimensional Hamiltonian system is established.

Surfaces, interfaces, fronts, and their dynamics are key ingredients in a number of interesting
phenomena in physics: surface waves, growth of crystal, deformation of membranes,
propagation of flame fronts, and many problems of hydrodynamics connected with the
motion of boundaries between regions of different densities and viscosities (see, e.g., [1, 2]).
Quantum field theory and statistical physics are also important applications of surfaces (see
[3, 4]).

Mean curvature plays a special role among the characteristics of surfaces and their
dynamics in several problems both in physics and mathematics (see, e.g., [5, 6]). Surfaces
of constant mean curvature have been studied intensively during recent years (see, e.g.,
[7–9]).

In the present paper we discuss a new approach for construction of constant mean
curvature surfaces. This method is based on the generalized Weierstrass–Enneper induction
([10–12]). It allows generation of constant mean curvature surfaces via integrable dynamical
system with two degrees of freedom. The relation between the trajectories and surfaces of
different types is established.

The generalization of the Weierstrass–Enneper formulae for inducing minimal surfaces
has been proposed in [10] (see also [11]) and rediscovered in a different but equivalent
form in connection with integrable nonlinear equations in [12]. We will use the notation
and formulae from [12].

We start with the linear system

ψ1z = pψ2 ψ2z̄ = −pψ1 (1)
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wherep(z, z̄) is a real function,ψ1 andψ2 are, in general, complex functions of the complex
variablez, and the bar denotes the complex conjugation. By using the solution of (1), one
introduces the variables(X1(z, z̄), X2(z, z̄), X3(z, z̄)) as follows:

X1 + iX2 = 2i
∫ z

z0

(ψ̄2
1 dz′ − ψ̄2

2 dz̄′)

X1 − iX2 = 2i
∫ z

z0

(ψ2
2 dz′ − ψ2

1 dz̄′)

X3 = −2
∫ z

z0

(ψ2ψ̄1 dz′ + ψ1ψ̄2 dz̄′).

(2)

By virtue of (1), integrals (2) do not depend on the choice of the curve of integration.
Then one treatsz, z̄ as local coordinates on a surface and(X1, X2, X3) as coordinates

of its immersion inR3. Formulae (2) induce a surface inR3 via the solutions of system
(1). By using the well known formulae, one finds the first fundamental form

�̃ = 4(|ψ1|2 + |ψ2|2)2 dz dz̄ (3)

and Gaussian (K) and mean (H ) curvatures

K = − (log(|ψ1|2 + |ψ2|2))zz̄
(|ψ1|2 + |ψ2|2)2 H = p(z, z̄)

|ψ1|2 + |ψ2|2 . (4)

This type of induction of surfaces is the generalization of the well known Weierstrass–
Enneper induction of minimal surfaces. Indeed, minimal surfaces (H ≡ 0) correspond to
p ≡ 0 and in this case formulae (2) in terms of functionsψ = ψ2/

√
2 andφ = ψ̄1/

√
2 are

reduced to those of Weierstrass–Enneper.
In this paper we will consider the case of constant mean curvature surfaces. In this case,

p = H(|ψ1|2 + |ψ2|2) whereH = constant and system (1) is reduced to the following:

ψ1t − iψ1x = 2H(|ψ1|2 + |ψ2|2)ψ2

ψ2t + iψ2x = −2H(|ψ1|2 + |ψ2|2)ψ1 (5)

wherez = t + ix.
First, we note that system (5) has four obvious real integrals of motion (independent on

t):

C+ =
∫

dx (ψ2
1 + ψ2

2 + ψ̄2
1 + ψ̄2

2)

C− = 1

i

∫
dx (ψ2

1 + ψ2
2 − ψ̄2

1 − ψ̄2
2)

P =
∫

dx (ψ1xψ̄2 − ψ̄1ψ2x)

H =
∫

dx { 1
2i(ψ1xψ̄2 + ψ̄1ψ2x)+H(|ψ1|2 + |ψ2|2)2}.

(6)

Then this system is Hamiltonian, i.e. it can be represented in the form

ψ1t = {ψ1,H} ψ2t = {ψ2,H} (7)

where the HamiltonianH is given by (6) and the Poisson bracket{ , } is of the form

{F1, F2} =
∫

dx

{(
δF1

δψ1

δF2

δψ̄2
− δF1

δψ2

δF2

δψ̄1

)
−

(
δF2

δψ1

δF1

δψ̄2
− δF2

δψ2

δF1

δψ̄1

)}
. (8)
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The corresponding symplectic form is

� =
∫

dx (dψ1 ∧ dψ̄2 + dψ̄1 ∧ dψ2).

Thus formulae (2) establish the correspondence between the trajectories of the infinite-
dimensional Hamiltonian system (5) and surfaces of constant mean curvature.

Let us putH 6= 0 to omit the discussion of minimal surfaces.
Let us also restrict ourselves to the particular case of this induction withp = p(t). It is

not difficult to show that under this constraint the only admissible solutions, of system (5),
which are representable by finite sums of terms of the typef (t) exp(iρx) are of the form

ψ1 = r(t) exp(iλx) ψ2 = s(t) exp(iλx) (9)

whereλ(6= 0) is a real parameter andr(t) = p1+ip2 ands(t) = q1+iq2 are complex-valued
functions. System (5) in these variables has the form

rt + λr − 2H(|r|2 + |s|2)s = 0

st − λs + 2H(|r|2 + |s|2)r = 0 (10)

or an equivalent system of four equations in terms of real and imaginary parts ofr and s.
It has the Hamiltonian form

∂pi

∂t
= {pi,H0}0

∂qj

∂t
= {qj ,H0}0 i, j = 1, 2

with the Hamiltonian function

H0 = H

2
(p2

1 + p2
2 + q2

1 + q2
2)

2 − λ(p1q1 + p2q2)

and, with respect to the usual Poisson brackets{ , }0 generated by the simplectic form,

�0 = dp1 ∧ dq1 + dp2 ∧ dq2.

It is easy to notice that the Hamiltonian functionH0 can be obtained fromH by using
the finite-dimensional reduction (9). Hamiltonian system (10) has another first integral

M = p1q2 − p2q1

which is in involution with the HamiltonianH0 and, moreover, these first integrals are
functionally independent everywhere except at zero (pi = qj = 0). Thus we conclude that
system (10) is integrable.

This system is not only integrable but alsoS1-symmetric. Its Hamiltonian, the additional
first integralM and the Poisson structure are preserved by the followingS1-action:{

p1 → p1 cosφ − p2 sinφ

p2 → p1 sinφ + p2 cosφ

{
q1 → q1 cosφ − q2 sinφ

q2 → q1 sinφ + q2 cosφ.
(11)

Let us assume without loss of generality that

λ = H = 1
2.

Formulae (2) obtain the following form:

X1 = −2
∫

{[(p2
1 + q2

1 − p2
2 − q2

2) cosx − 2(p1p2 + q1q2) sinx] dx

+ [2(q1q2 − p1p2) cosx + (q2
1 + p2

2 − q2
2 − p2

1) sinx] dt}
X2 = 2

∫
{[2(p1p2 + q1q2) cosx + (p2

1 + q2
1 − p2

2 − q2
2) sinx] dx

+ [(p2
1 + q2

2 − p2
2 − q2

1) cosx + 2(q1q2 − p1p2) sinx] dt}
X3 = −4

∫
{(p1q1 + p2q2) dt − (p1q2 − p2q1) dx}.

(12)
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Trajectories of Hamiltonian system (10) which have different modulo symmetry (11)
describe different constant mean curvature surfaces by using formulae (12). It also follows
from (12) that these surfaces are invariant under the following helicoidal transform:

X1 → X1 cosτ −X2 sinτ

X2 → X1 sinτ +X2 cosτ

X3 → X3 + 4Mτ

(13)

and the restriction, of this transform, to the surface coincides with the shift of Imz = x :
x → x + τ.

We see that ifM = 0 then we obtain a surface of revolution. All these surfaces are
equivalent modulo (11) to surfaces withp2 ≡ q2 ≡ 0. It is not complicated to give a
qualitative analysis of the behaviour of the restriction of (10) onto this plane. This vector
field has three zeros at points(0, 0) and (± 1

2,± 1
2). The latter correspond to cylinders of

revolution. At these points the HamiltonianH0 is equal to− 1
32. These points are bounded

by cycles on which the Hamiltonian is negative but more than− 1
32 and which correspond to

unduloids (i.e. the Delaunay surfaces which are embedded intoR3 and differ from cylinder
and round sphere). The Hamiltonian vanishes at the zero point and two separatrices which
come from(0, 0) and arrives to it. These separatrices correspond to a round sphere with a
pair of truncated points and bound a domain where the Hamiltonian is negative. The domain
H0 > 0 is fibred by cycles of the Hamiltonian system (10) and these cycles correspond to
nodoids (i.e. Delaunay surfaces which have self-intersections).

Thus we obtain a very natural Hamiltonian interpretation for the well known family of
Delaunay surfaces ([13]).

In the same manner, it is shown that the full family of surfaces which corresponds to
solutions of (10) withM 6= 0 coincides with the family of helicoidal surfaces of constant
mean curvature which were constructed in [14].
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